Quark-antiquark pair production in heavy ion collisions

K. Kajantie

keijo.kajantie@helsinki.fi

University of Helsinki, Finland

BNL, 9 May 2006

Work with F. Gelis and T. Lappi

Motivation, background

- QCD matter formed at RHIC seems to be in local thermal equilibrium
- What about chemical equilibrium: $g = g_B + \frac{7}{8}g_F = 16 + \frac{21}{2}N_f$?
- Prejudice: initial state dominantly gluonic so the system should be far from chemical equilibrium
- Quantitatively? Can one compute the rate of (light) $q\bar{q}$ production?
- Might be important for thermal dilepton rates.

Standard QCD perturbation theory

Inclusive cross sections $p+p \to {\rm gluon, quark}(p_T>2\,{\rm GeV})+X$ at $\sqrt{s}=5500$ GeV Eskola-Kajantie, nucl-th/9610015

The quarks come dominantly from gluons, $g + q \rightarrow g + q$:

Classical (+ quantum initial condition) field model:

For $\tau > 0$ want

$$A_{\mu}(\tau, \eta, \mathbf{x}_T) = (\underbrace{A_{\tau} = 0}_{\text{gauge choice}}, \underbrace{A_{\eta}(\tau, \mathbf{x}_T)}_{\sim \text{longit.}}, \mathbf{A}_T(\tau, \mathbf{x}_T))$$

 \Rightarrow energy in and number of gluons. Solve numerically from $[D_{\mu}, F_{\mu\nu}] = 0$ with the remarkable initial condition from matching to two vacua below the light cone:

$$A^{i}(\tau = 0, \mathbf{x}_{T}) = A^{i}_{\text{vac}1}(\mathbf{x}_{T}) + A^{i}_{\text{vac}2}(\mathbf{x}_{T}),$$

 $A^{\eta}(\tau = 0, \mathbf{x}_{T}) = \frac{1}{2}ig[A^{i}_{\text{vac}1}(\mathbf{x}_{T}), A^{i}_{\text{vac}2}(\mathbf{x}_{T})].$

$$A_i^{\mathrm{vac}}(\mathbf{x}_T) = U(\mathbf{x}_T)\partial_i U^{-1}(\mathbf{x}_T),$$

$$U = e^{i\Lambda}, \quad -\partial_T^2 \Lambda = g\rho,$$

$$\rho = \text{stochastic source}.$$

$$A_\mu = \text{pure gauge 1}$$

$$A_\mu = \text{pure gauge 2}$$

$$A_\mu = \text{pure gauge 2}$$

Set up the numerical computation on a, say, 512×512 transverse lattice (Krasnitz, Venugopalan, Lappi). Parameters: $g^2\mu$, R_A . Main output: energy density plotted as $dE/d\eta = V\epsilon = \pi R_A^2 \tau \epsilon$:

$$g^2\mu=2~{\rm GeV}\Rightarrow 1/g^2\mu=0.1~{\rm fm}$$

Sudden rise at $\tau=1/Q_s$, then $\epsilon\tau=$ const, no thermalisation, other physics.

But you can as well plot $\epsilon(\tau)$:

⇒ gluon production is instantaneous, all the action is on light cone. Creation of little bang; followed by thermalisation, expansion, hadronisation,...

Find analytically:

$$\epsilon(\tau=0) = \langle \int \frac{d^2 \mathbf{x}_T}{\pi R_A^2} \frac{H(\mathbf{x}_T)}{\tau} |_{\tau=0} \rangle$$

$$\frac{H(\mathbf{x}_T)}{\tau}|_{\tau=0} = g^2(\delta_{ij}\delta_{kl} + \epsilon_{ij}\epsilon_{kl})\operatorname{Tr}[A_i^{(1)}(\mathbf{x}_T), A_j^{(2)}(\mathbf{x}_T)][A_k^{(1)}(\mathbf{x}_T), A_l^{(2)}(\mathbf{x}_T)]$$

$$A_i = \frac{i}{g}U\partial_i U^{\dagger}, \quad U = e^{i\Lambda}, \quad -\partial_T^2 \Lambda = g\rho \quad \rho = \text{stochastic source}$$

The initial energy density of little bang is given by the ensemble average of Tr product of two commutators of vacuum fields

Lappi-McLerran

Now that you have A_{μ} , does it produce $q\bar{q}$ pairs? Strong or time dependent fields produce particles.

The matrix element is

$$M_{\tau}(p,q) \equiv \int \frac{\tau \mathrm{d}z \mathrm{d}^2 \mathbf{x}_T}{\sqrt{\tau^2 + z^2}} \phi_{\mathbf{p}}^{\dagger}(\tau, \mathbf{x}) \gamma^0 \gamma^{\tau} \psi_{\mathbf{q}}(\tau, \mathbf{x}) .$$

Now you have to set up a truly 1+3 d computation for integrating $\psi_{\bf q}(\tau,{\bf x})$ using Dirac. F. Gelis, K. Kajantie, T. Lappi, hep-ph/0508229, PRL

Lattice spacing: $(N_T a)^2 = \pi (6.7 \, \text{fm})^2 \Rightarrow a = 12 \, \text{fm}/N_T \approx 0.05 \, \text{fm}$.

Number count: $\psi_{\mathbf{q}}^c(\tau, \mathbf{x})$ has $180^2 \times 400$ numbers for \mathbf{x} , 3 for c=3 colors, 2.4 for ψ , a total of 1.2 GB single precision. This set is integrated forward in steps of $d\tau=0.02a$ in 500 steps to get to $\tau=0.25$ fm.

Warning: Maybe one should use energy eigenstates of the Hamiltonian with exact A^{μ} , not free ones!

 $g^2\mu=2$ GeV ("LHC"), lowest curve $g^2\mu=1$ GeV ("RHIC")

RHIC phenomenology

- ullet Standard: Need 1000 partons, if these all gluons need $g^2\mu=2$ GeV
- Alternative: Need 1000 partons, above results imply that $g^2\mu=1.3$ GeV giving 400 gluons, $100N_f$ quarks, $100N_f$ antiquarks, close to thermal ratio $N_q/N_q=32/9N_f$.

Thus also instant chemical thermalisation!?

Loopholes:

- Maybe need exact wave functions?
- Maybe the gluons produced by the classical gluon field also have to be included?

- Gluons dominate the wave function of a fast-moving hadron. Parametrically, pairs are suppressed by g^2 from the $q+\bar q\to g$ vertex \Rightarrow Little bang is initially far from chemical equilibrium
- ullet However, g pprox 2, little bang is very non-perturbative and our numerical results suggest early chemical equilibrium
- Theoretical loopholes exist and this is an issue which can only be resolved experimentally
- Experimental handle: thermal dilepton production
- Matching to heavy quark production?